## (The 40 Question- Project ( 100 points, 2.5 points per question)

<u>(100% of the total grade)</u>

- Students will work on the project from May 18<sup>th</sup> until June 11<sup>th</sup> 2020.
- Students will work on several questions per live meeting and I will be coaching them to get to the correct answer.
- Students will be instructed to take a photo of their work and answers of the questions we work during live meeting and email or text them to me the next day.

## <u>A 40- Question Project</u>

- 1. A total of \$1,000 is invested at 10%, compounded monthly for five years. What is the balance after five years? What is the effective rate?
- 2. Find the inverse of the function  $f(x) = e^{6-x} + 2$ to be restricted to find the inverse state the restricted domain. If the domain does not need to be restricted to find the inverse, explain.
- 3. Find the exact solution for x in the equation  $\ln(x-10) + \ln(x-2) = 0.$
- 4. What is the domain of the function  $f(x) = \ln(x^2 - 9x + 20)?$

5. Write

$$\frac{1}{2}\log_8(x) - 3\log_8(x+1)$$

As one term.

6. Find the exact value of

 $9\log_6 \sqrt[3]{36}$ .

7. Find the exact solution(s) to the equation

$$e^{2x} - e^x - 30 = 0.$$

8. Find the exact solution(s) to the equation  $\ln(x-2) + \ln(2x-3) = 2\ln(x).$  9. Which balance is largest after five years?

a. \$1,000 invested at 10% compounded continuously

- b. \$1,000 invested at 10.3% compounded monthly
- c. \$1,000 invested at 10.1% compounded weekly
- 10.On a college campus of 5,000 students, one student returned from vacation with a contagious flu virus. The spread of the virus through the student body is given by

$$y = \frac{5000}{1 + 4999e^{-0.8\tau}}$$

Where y is the total number of students infected after t days. The college will cancel classes when 40% or more of the students are ill. After how many days will the college cancel classes?

11. What is the exact maximum value of the function?

$$f(x) = -2x^2 - 16x + 7?$$

12.Given 
$$f(x) = 7x^2 - 3$$
, and  $g(x) = 1 - 2x$ , find  $f(g(x))$ 

$$f(x) = \frac{1}{x-2}$$

13. Find the domain of the function

$$f(x) = \frac{1}{x}$$

14. Determine whether the function *is one-to-one.* If it is, find its inverse. If not, explain why there is no inverse.

$$f(x) = rac{2x+1}{3}$$
 , find  $f^{-1}(x)$   
15. Given

16. Is the function 
$$f(x) = -x^4 + 2x^2 - 1$$
 odd, even or neither?

17. Find the oblique(slant) asymptote for the graph

$$y=rac{x^2-4x-5}{x-2}.$$
 Of Sketch the graph of this function

- 18. Find all vertical and horizontal asymptotes for the graph  $y = \frac{2x 7}{x^2 6x}$ . of Graph the function.
- 19. If you deposit \$5,000 in a trust fund that pays 9.5% interest, compounded continuously, which of the following values is closest to the amount that will be in the trust after 50 years. Rounded to the nearest \$1.00.

| <b>a)</b> \$116.    | <b>b)</b> \$577,921.  | <b>c)</b> \$744,130. |
|---------------------|-----------------------|----------------------|
| <b>d)</b> \$14,946. | e) None of the above. |                      |

$$f(x) = \left(rac{3}{2}
ight)^{-x} + 2$$
  
20. Determine on what interval(s) the function is  
decreasing.

- a) (-∞, ∞)
   b) (-∞, 0]
   d) (-∞, ∞)
   e) None of the above
- c) Increasing Everywhere.

21. Find the inverse function of the function

$$f(x) = \log_{10}(x+2)$$

- A)  $f^{-1}(x) = e^{x} + 2$ B)  $f^{-1}(x) = 10^{x} - 2$ C)  $f^{-1}(x) = 10^{x} + 2$ D)  $f^{-1}(x) = e^{x} - 2$
- E) None of the above

 $\log \frac{x^2}{y^3 z^4}$ 

22. Use the properties of logarithms to simplify the expression and write as a sum difference, and/or constant multiple of logarithms.

A) 
$$2\log x - 3\log y + 4\log z$$
  
C)  $\log(x^2 - y^2 - z^4)$   
B)  $\log x^2 - \log y^2 z^4$   
D)  $2\log x - 3\log y - 4\log z$ 

E) None of the above

| 23. Evaluate log <sub>7</sub> 1           | 125                    |        |
|-------------------------------------------|------------------------|--------|
| a) 2.481262.<br>1.772095.                 | <b>b)</b> 4.754921.    | c)     |
| <b>d)</b> 2.09691.                        | e) None of the         | above. |
| $e^{2z}+6=$ 24. Solve                     | = 10                   |        |
| a) <b>In 4</b><br><b>e)</b> None of the a | <b>b) ln 6 c) ln 3</b> | d)ln 2 |

25. How many years will it take your money to double if you deposit it into a fund paying 10% compounded monthly?

| <b>a)</b> 7.27 | <b>b)</b> 10 | <b>c)</b> 241 | <b>d)</b> 6.96 |
|----------------|--------------|---------------|----------------|
| e) None of th  | ne above.    |               |                |

26. Solve 
$$10 + 2\ln(x - 3) = 20$$
.

a)  

$$3 \pm \sqrt{10}$$
  
b) 4.  
c)  $e^{5} + 3$   
c)  $e^{5} + 3$   
d)  
 $e^{3} + 5$   
e) None of the above

27. The demand equation for a certain product is given by

 $p = 500 - \frac{1}{2} \left( e^{0.004x} \right).$ Find the demands x for price p = \$350. a) 1426. b) 1079. c) 1860. d) 1513. e) None of the above.

28. Find the range of the function 
$$f(x) = 2\ln(x-6) + 10$$

29. Find the reference angle to the angle equal to 290°

a) 70°.
b) 200°
c) 650°
d) 110°.
e) None of the above.

 $\sin\left(\sin^{-1}5\right)$ 30. Find the exact value of b) Undefined. **a)** 5. c) 1  $\overline{5}$ **d)** 1. e) None of the above.  $f(x) = \sqrt{25 - x^2}$ 31. Find the domain of the function a)  $x \le 25$ All real numbers x such that **b**)  $x \leq 5$ All real numbers x such that c)  $-5 \leq x \leq 5$ All real numbers x such that d)  $x \leq -5$  , or  $x \geq 5$  . All real numbers x such that e) None of the above.  $\log_2 81 - \log_2 \frac{1}{27}$ 32. Find the exact value of **a)** 0.477121 **b)**7 c) 1.098612 **d)** 1

e) None of the above.

33. If a = 6 and c = 19, determine the value of =. Round to two decimal places.



34. Convert the angle of magnitude <sup>4</sup> to degrees. Then, convert 135° to radians.

 $P = P_0 e^{0.0451}$ 

35. Assume that the world population at time t is given by

- a. How long will it take the world population to double?
- b. To triple?
- c. How long will it take for the population to decrease to onehalf?

$$y=a\cdot 10^{bx}$$

36. Find the value of b in the exponential function that passes through the points (5, 40) and (10,400).

a) .2b) 4c) 0.460517d) 0.3979e) None of the above.

37. Determine two conterminal angles (one positive and one  $\theta = \frac{3\pi}{4}$ negative) for  $\frac{13\pi}{4}, -\frac{11\pi}{4}$ α.  $\frac{9\pi}{4}, -\frac{5\pi}{8}$ b.  $\frac{7\pi}{4}, -\frac{9\pi}{4}$ С.  $\frac{3\pi}{2}, -\frac{5\pi}{12}$ d.  $\frac{11\pi}{4}, -\frac{5\pi}{4}$ e. 38. Find the point (x,y) on the unit circle that corresponds to the real number  $t = \frac{\pi}{4}$ . Use your results to evaluate tan( t). tant = 1a. b. tant = 0 $\tan t = \frac{\sqrt{3}}{2}$ С. d. tant = undefined $\tan t = -\frac{\sqrt{3}}{2}$ e.

39.

Find the exact value of  $\csc \theta$ , using the triangle shown in the figure below, if a = 7 and b = 24.



e.

Bonus:

The angle of elevation of the sun is 34°. Find the length, l, of a shadow cast by a tree that is 53 feet tall. Round answer to two decimal places.

- a. *l* = 94.78 feet
- b. *l* = 59.45 feet
- c. *l* = 79.09 feet
- d. *l* = 63.93 feet
- e. 1=78.58 feet

Good Luck